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A major purpose of biomedical terminologies is 
to provide uniform concept representation, 
allowing for improved methods of analysis of 
biomedical information. While this goal is being 
realized in bioinformatics, with the emergence of 
the Gene Ontologya as a standard, there is still 
no real standard for the representation of 
clinical concepts. As discoveries in biology and 
clinical medicine move from parallel to 
intersecting paths, standardized representation 
will become more important. A large portion of 
significant data, however, is mainly represented 
as free text, upon which conducting computer-
based inferencing is nearly impossible.  In order 
to test our hypothesis that existing biomedical 
terminologies, specifically the UMLS 
Metathesaurus® and SNOMED CT®, could be 
used as templates to implement semantic and 
logical relationships over free text data that is 
important both clinically and biologically, we 
chose to analyze OMIMTM (Online Mendelian 
Inheritance in Man). After finding OMIM 
entries’ conceptual equivalents in each 
respective terminology, we extracted the 
semantic relationships that were present and 
evaluated a subset of them for semantic, logical, 
and biological legitimacy. Our study reveals the 
possibility of putting the knowledge present in 
biomedical terminologies to its intended use, 
with potentially clinically significant 
consequences. 
 

INTRODUCTION 
 
One of the overarching goals of the field of 
medical informatics is creating methods for the 
improved integration of biomedical data 
sources1. As the amount of biomedical data, 
continues to increase, integration among data 
sources becomes even more important. 
Increasingly, “it is in the correlations observed 
between datasets that the most interesting 
biological insights are found2.” If one approaches 
linked biomedical sources as “networks” of 
information, one may also measure the value of 
their integration by Metcalfe’s law, which states 
that the “value” of a network increases in 
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proportion to the square of the number of its 
component nodes3. 
 One of the more significant changes in 
biomedicine due to this information explosion 
involves the different perspectives being taken 
toward data analysis. As the post-genomic era 
begins, models of analysis that focus specifically 
on the data obtained, such as algorithms for gene 
clustering, are likely to be supplanted by so-
called “models-of-process”, which explain the 
relationships between genomic data and the 
biological pathways underlying physiologic 
processes4. Relating these processes to clinical 
outcomes is the next logical, though daunting, 
step in this process. Methods that allow for the 
integration of various data sources from different 
levels of biology may greatly facilitate this 
progression, perhaps potentiating the emergence 
of even more complex and accurate in silico 
biological models5. Developing these types of 
models is the goal of the Molecular Medicine 
Matrix (M3), currently under development at our 
institution. Preliminary steps in the system’s 
development have been described previously6. 
 A straightforward approach to data 
integration involves employing lexical methods 
to match terms between diverse data sources. 
Structured biomedical terminologies, such a 
SNOMED and the UMLS, may often serve as 
standards of measurement for determining the 
efficacy of a method, or as standards of linguistic 
knowledge as well7. Other authors have 
previously shown the feasibility of this type of 
data integration, using common occurrences of 
MeSH terms in MEDLINE references as the key 
to link OMIM, GENBANK, and the UMLS8. 
While this type of integration is no longer novel, 
we will attempt to show the feasibility of 
applying both these links and the semantic 
information they imply, in order to add a more 
formal internal structure to OMIM. Uncovering 
this internal structure may allow for even further, 
formal linking between OMIM and other 
biomedical data sources9.   
 

METHODS 
 
Data sources: Currently part of the NCBI’s 

 



 

 

Figure 1: Schematic of methods for term and relationship extraction 
 
system of databases, OMIMb is a comprehensive 
catalog of genes and genetic disorders. In 
addition to the free-text descriptions of each 
entry, it also contains information on 
chromosomal location, inheritance patterns, and 
allelic variants. The principal data source for this 
project was the “omim.txt” file, which contains 
the entire free text of the OMIM database. Each 
disease is represented by an OMIM code, as well 
as various free-text “fields”, including the “Title” 
field that represents each disease or gene as well 
as its naming variants. The entire OMIM 
database contains over 14,000 entries, over 90% 
of which are autosomally inherited diseases.  
 UMLS. We used the 2003AA version of the 
UMLS Metathesaurusc, which contains 
approximately 800,000 concept entries (CUIs) 
from over 100 biomedical vocabularies. Of note, 
the UMLS encompasses previous versions of 
both OMIM (the 1993 version), and SNOMED 
(version 3.5, 1998).  
 SNOMED CT. We used the July 2002 
release of SNOMED CTd, (SCT) which contains 
approximately 330,000 concepts and 1 million 
relationships among them. An important feature 
of this version of SNOMED is its incorporation 
of description logics, allowing for the 
development of inferred relationships as well10. 
 Extraction of terms. A schematic of our 
overall methods can be seen in Figure 1. We first 
used Perl scripts to extract the individual entries 
from the “Title” and “Autosomal Variants” fields 
in omim.txt, resulting in approximately 70,000 
individual entries. For the purpose of the 
following analysis, we used the extracted entries 
from omim.txt, the “STR” (string) field from the 
UMLS table MRCON, and the “Term” field 
from the file “sct_descriptions” as our textual 
sources; and OMIM numbers, UMLS CUIs, and 
SCT concept id’s as concept identifiers. Once we 
had our full data set, we first attempted to match 
OMIM concepts exactly to the UMLS and to 
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SCT by comparing the above textual sources. In 
order to expand the lexical matching, we then 
processed the MIM concepts and the SCT 
concepts with norm, part of the UMLS Lexical 
Toolse, in order to obtain each concept’s 
lexically normalized form. Finally, we attempted 
to match the normalized forms of the OMIM 
concepts to the normalized SCT file, as well as 
the MRXNS.ENG file in the UMLS. After 
obtaining the matches, we also verified the 
semantic types of both the UMLS and SNOMED 
entries, and removed matches between two 
incompatible types. We then combined the total 
matches to obtain the total number of OMIM 
concepts obtained from each source terminology. 
 Finding relationships. Once we had our 
final set of OMIM concepts, we then obtained 
the sets of applicable concept relations within 
each respective source terminology. In the 
UMLS, for example, we used the set of CUIs we 
had obtained, and found all corresponding 
relations present in MRREL. We repeated the 
same process using the SCT relationship file. 
Finally, we translated the CUIs and the concept 
id’s in the relationship sets to their 
corresponding OMIM numbers, in order to 
obtain the relationships in terms of OMIM itself. 
 In order to perform semantic checking, 
exclusion lists were created for each source 
terminology. For the UMLS, the initial set of 
matching CUIs represented 98 different semantic 
types. Of these, 23, such as “Organism” and 
“Social Behavior”, were put on the exclusion 
list. Semantic checking for SCT was more 
complex, as the key used for matches was the 
concept id, rather than the hierarchical identifier. 
In order to deal with this situation, we employed 
an ancestor-descendant table, created as part of 
the M3 system, that contained the hierarchy of 
“is-a” links for each concept id. Through trial 
and error, the 3rd level down in the tree was 
eventually chosen as the level at which a general 
semantic type would be determined. At this 
level, there were 73 types, 28 of which, such as
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1. Process terms in “omim.txt” to obtain OMIM entry number 
2. Find corresponding SNOMED CT concept ID’s, UMLS CUIs through lexical matches 
3. Verify semantics of matches 
4. Find existing semantic relationships for source terminology concepts 
5. Translate CUI/ID back to OMIM entry number 
6. Find relationships among OMIM entries 
7. Verify validity of subset of returned relationships 



 

 

 
 UMLS SNOMED CT 

Concepts mapping to OMIM 7673 2794 
 Non-OMIM concepts related 

to OMIM concepts  494,660 20,493 

Relationships between two 
OMIM concepts  44,778 352 

Distinct semantic types for 
inter-OMIM relationships 10 8 

Distinct OMIM numbers 
represented in relationships 2865 444 

Table 1: Quantitative analysis of OMIM relationships in the source terminologies 
 
 “Vehicle” and “Non-current concept”, were 
excluded. 
 After finding these sets of relations, we next 
attempted to prove their usefulness in terms of 
inference on biological concepts.  As this process 
required manual revision of each entry, we chose 
a sample of 100 random relationships, drawn 
from both result sets, as our test set. We defined 
three classes of relationships: “Useful”, meaning 
biologically plausible and not already existing in 
OMIM; “Questionable”, meaning not proven 
valid based on existing evidence; and “Pre-
existing”, or already present in OMIM. 
 As an example of this entire matching 
process, we can take the case of OMIM entry 
306900, “Hemophilia B”. In the UMLS, 
Hemophilia B is represented by the CUI 
C0008533, and “MIM” is listed as one of the 
over 15 source vocabularies in which it is 
present. In SNOMED CT, Hemophilia B is 
represented by concept id 41788008. In the 
UMLS, CUI C0008533 has a relationship to 186 
other CUIs, 28 of which are linked to MIM in 
MRSO, 62 of which have matches in our OMIM 
set but are not linked to MIM in MRSO, and 96 
of which are not present in our OMIM set. 
Among these 186 relationships, 10 specific 
relationship types are represented. After 
converting the CUIs back to their corresponding 
MIM numbers, one example of the “SIB” 
(sibling) relationships we found for 306900 was 
with 234000, or “factor XII deficiency”. In SCT, 
41788008 is directly related to 11 other concept 
id’s, none of which is in the OMIM set. 
 

RESULTS 
 
The main results of our analysis can be seen in 
Table 1. Of note, the UMLS currently only 
contains 240 CUIs that are directly linked to the 
1993 version of OMIM. Prior to semantic 
checking, 7804 UMLS CUIs and 3225 SCT 
concepts matched out of the 70,801 different 

OMIM entries. Semantic checking excluded 131 
UMLS CUIs and 431 SCT concepts, including 
229 non-current concepts, leaving 7673 and 
2794 respectively. Of these concepts, 2638 were 
found in both vocabularies, for a combined total 
of 7829 distinct OMIM codes. Of these OMIM 
entries, 93% were autosomal diseases. 224 of the 
240 CUIs directly linked to OMIM in the UMLS 
were represented in the set of 7673 we obtained.  
 In the UMLS, we initially obtained 
approximately 494,000 entries in MRREL 
containing one or more of the 7673 CUIs we 
retrieved. These entries represented relationships 
between the CUIs in our OMIM set and 
approximately 64,400 CUIs that were outside the 
set, and inter-relationships between 
approximately 1,200 CUIs that were in the 
OMIM set. The inter-relationship set contained 
10 distinct types of relationships, with the most 
common being the SIB relationship 
(approximately 80% of the total relationships). 
MESH was the source of approximately 50% of 
the CUIs in the OMIM set, while components of 
SCT were the sources for approximately 17%. 
  For the 2794 SNOMED concepts, we found 
20,493 entries in the “sct_relationships” table, 
among 12,626 distinct concepts. Within these 
entries, we found 352 where both concepts were 
members of the OMIM set. The relationships 
spanned 8 different categories, with “finding 
site” and “associated morphology” being the 
most prevalent after “is-a”. 
 Converting the concepts in the relationship 
sets back to their corresponding OMIM numbers 
allowed us to achieve our principal goal of using 
pre-established relationships from existing 
terminologies to add a semantic structure to 
OMIM. Since multiple OMIM numbers may be 
associated to each CUI or concept id, we 
obtained a larger set of relationships from this 
process. Specifically, using MRREL we obtained 
44,778 entries, representing 2865 OMIM  



 

 

Table 2: Examples of retrieved OMIM relationships 
 
numbers, with 10 different types of semantic 
relationships, the vast majority of which were 
type “SIB”. From SCT, we obtained 352 entries, 
representing 444 OMIM numbers, and 8 
semantic types. 
 Though we only used a small sample for our 
validation step, we found 31 “useful” 
relationships between OMIM entries, 23 
“questionable” relationships, and 46 pre-existing 
relationships. Sample results from this analysis 
can be seen in Table 2. An example of one of the 
“useful” relationships is a “SIB” relationship 
between entries 300011, ATP7A, a candidate 
gene involved in Menke’s disease, an X-linked 
disorder involving cerebral degeneration, and 
309550, FMR1, a gene involved in Fragile X 
syndrome. 
 

DISCUSSION 
 
The results of our study reveal the possibility of 
putting tools created for data integration into 
practice. Even with relatively basic methods, we 
were able to create a useful set of relationships 
between large biomedical terminologies and the 
OMIM database. More sophisticated methods for 
processing OMIM’s full text entries probably 
would have permitted the extraction of several 
times more relationships.  

One surprising result of this project was the 
small number of SCT relationships represented. 
This result may stem from several factors, 
including the possibility that SCT’s complex 
semantic structure is poorly suited for analysis 
by simple lexical methods. The possibility of 
post-coordination of SCT concepts, for example, 
may lead to greater representation concepts at the 
atomic level in the terminology, rather than 
“complete” concepts as represented in the UMLS 
and OMIM. Additionally, the analysis of 

relationships only on a direct level may not have 
been appropriate to SCT’s semantic structure, 
which may give more meaning to the entire 
ancestor-descendant environment of a concept. 
Finally, the lack of a standard, normalized file of 
SCT concepts such as MRXNS.ENG, as well as 
the inclusion of semantic information in many of 
the textual descriptions of SCT concepts (i.e. 
“Tuberculosis (disorder)”), may have led to an 
increased level of false negatives. 

Another potential problem area for the 
matching methods is the approach to semantic 
matching. Though UMLS semantic types are 
relatively straightforward, there were potentially 
some CUIs that were falsely excluded, especially 
since CUIs may have more than one semantic 
type. The method for SCT set an arbitrary level 
of semantic type of a concept’s parents, with an 
attempt to balance sensitivity and specificity, but 
again could have led to errors in either direction. 
A potential fix for this could have been to use 
SCT’s hierarchical identifiers.  
 Though obtaining the set of matching 
concepts was an important initial first step in our 
study, the more significant results involve 
relationships among these concepts in both 
source terminologies. The need for even more 
linking in OMIM may initially seem 
unnecessary, as it is now part of the Entrez 
system at the NCBI, and its textual entries 
contain hyperlinks to other OMIM entries. The 
principal situation that our approach attempts to 
solve, however, looks at OMIM’s linkages in a 
different way. For example, without text 
processing, extracting links to other OMIM 
entries requires manual searching of any specific 
entry, even in the Entrez system. Additionally, 
those links are generally straightforward, such as 
gene-disease, or to other diseases caused by the 

Category OMIM 1 Relationship OMIM 2 Comment 

Useful 300384-Emerin RB 188380-Thymopoetin 

Emerin mutation 
causes Emery-

Dreifuss muscular 
dystrophy; 

Thymopoetin is active 
at the nicotinic 
Acetylcholine 

receptors in muscles 

Questionable 146931 – IL-9 SIB 135940-Filaggrin 
IL-9 regulates 

lymphoid/ myeloid  
system. Filaggrin is an 

epidermal protein 

Pre-existing 
187950 – 
Essential 

Thrombocythemi
a (ET) 

Is-a 
6000044-

Thrombopoetin gene 
(THPO) 

Mutation in THPO 
may cause ET, cited 

in OMIM text 



 

 

same gene. Using relationships already present in 
the UMLS and SCT allows for the development 
of more complex relations, and is also a potential 
first step in adding additional semantic structure 
to the vast amount of data in OMIM. Adding 
semantic structure to such an impressive 
repository of clinical and genetic information 
could lead to several benefits, not the least of 
which would be more complex, automated 
queries based on the newly developed structure. 
Verified semantic relationships among concepts 
could also provide a template for further, 
concept-oriented coding of the extremely 
detailed and informative free text entries present 
in OMIM.  
 Though our methods obtained a good deal of 
“questionable”, or perhaps yet undiscovered, 
relationships, more complicated methods, or 
even perhaps a larger or more thoroughly 
processed data set, could significantly increase 
precision. Even with improved precision, 
however, elucidating complex or newly 
discovered relationships among biological 
concepts will almost always require human 
verification. Further refinement of our methods 
may allow for their application to a different data 
source, such as a purely clinical database, for 
inferencing on clinical associations. 
 

CONCLUSIONS 
 
Though our methods are an early step in 
providing improved methods for information 
extraction from a large repository such as 
OMIM, what they best reveal is the possibility of 
using existing biomedical terminologies to find 
an underlying structure in biomedical 
information sources. More refined methods, such 
as those involving natural language processing or 
machine learning methods, should allow for 
improved precision and the development of a 
fully-verified semantic structure to a chosen set 
of biomedical data. With fully verified methods, 
especially with improved semantic and logical 
validation, however, these techniques could also 
serve to help update the UMLS to include the 
current version of OMIM.  
 We are currently exploring approaches to 
developing these refined methods, with the hope 
of applying them to different parts of the OMIM 
dataset. In order to provide scalability to the 
methods, however, the next important step will 
be developing automated methods for detecting 
“useful” relationships among concepts, with the 
hope of discovering linkages that may point to 
potentially fruitful areas of research.  

 Applying formal structure to a biomedical 
data source may lead to several advantages for 
researchers looking for relations between 
biological discoveries and disease. Like the 
Entrez system, which links a wide variety of 
sources of biomedical information, representing 
data and relationships in a uniform manner 
improves the possibility of automated 
inferencing and information extraction. 
Biological networks may not be the only 
important systems in the post-genomic era. 
Perhaps, with increasing sources of complex 
biomedical data, networks of well-integrated 
biomedical information sources may soon 
exemplify Metcalfe’s law. 
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